Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
opprlemOLD.2 |
⊢ 𝐸 = Slot 𝑁 |
3 |
|
opprlemOLD.3 |
⊢ 𝑁 ∈ ℕ |
4 |
|
opprlemOLD.4 |
⊢ 𝑁 < 3 |
5 |
2 3
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
6 |
3
|
nnrei |
⊢ 𝑁 ∈ ℝ |
7 |
6 4
|
ltneii |
⊢ 𝑁 ≠ 3 |
8 |
2 3
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝑁 |
9 |
|
mulrndx |
⊢ ( .r ‘ ndx ) = 3 |
10 |
8 9
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( .r ‘ ndx ) ↔ 𝑁 ≠ 3 ) |
11 |
7 10
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( .r ‘ ndx ) |
12 |
5 11
|
setsnid |
⊢ ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑅 ) 〉 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
15 |
13 14 1
|
opprval |
⊢ 𝑂 = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑅 ) 〉 ) |
16 |
15
|
fveq2i |
⊢ ( 𝐸 ‘ 𝑂 ) = ( 𝐸 ‘ ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑅 ) 〉 ) ) |
17 |
12 16
|
eqtr4i |
⊢ ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑂 ) |