Metamath Proof Explorer


Theorem opprlem

Description: Lemma for opprbas and oppradd . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses opprbas.1 O = opp r R
opprlem.2 E = Slot E ndx
opprlem.3 E ndx ndx
Assertion opprlem E R = E O

Proof

Step Hyp Ref Expression
1 opprbas.1 O = opp r R
2 opprlem.2 E = Slot E ndx
3 opprlem.3 E ndx ndx
4 2 3 setsnid E R = E R sSet ndx tpos R
5 eqid Base R = Base R
6 eqid R = R
7 5 6 1 opprval O = R sSet ndx tpos R
8 7 fveq2i E O = E R sSet ndx tpos R
9 4 8 eqtr4i E R = E O