Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Proof shortened by AV, 6-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opprbas.1 | |- O = ( oppR ` R ) |
|
opprbas.2 | |- B = ( Base ` R ) |
||
Assertion | opprbas | |- B = ( Base ` O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | |- O = ( oppR ` R ) |
|
2 | opprbas.2 | |- B = ( Base ` R ) |
|
3 | baseid | |- Base = Slot ( Base ` ndx ) |
|
4 | basendxnmulrndx | |- ( Base ` ndx ) =/= ( .r ` ndx ) |
|
5 | 1 3 4 | opprlem | |- ( Base ` R ) = ( Base ` O ) |
6 | 2 5 | eqtri | |- B = ( Base ` O ) |