| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
| 2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 3 |
1 2
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 4 |
3
|
a1i |
|- ( R e. Rng -> ( Base ` R ) = ( Base ` O ) ) |
| 5 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 6 |
1 5
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
| 7 |
6
|
a1i |
|- ( R e. Rng -> ( +g ` R ) = ( +g ` O ) ) |
| 8 |
|
eqidd |
|- ( R e. Rng -> ( .r ` O ) = ( .r ` O ) ) |
| 9 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
| 10 |
3 6
|
ablprop |
|- ( R e. Abel <-> O e. Abel ) |
| 11 |
9 10
|
sylib |
|- ( R e. Rng -> O e. Abel ) |
| 12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 13 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
| 14 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) y ) = ( y ( .r ` R ) x ) |
| 15 |
2 12
|
rngcl |
|- ( ( R e. Rng /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( y ( .r ` R ) x ) e. ( Base ` R ) ) |
| 16 |
15
|
3com23 |
|- ( ( R e. Rng /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( y ( .r ` R ) x ) e. ( Base ` R ) ) |
| 17 |
14 16
|
eqeltrid |
|- ( ( R e. Rng /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` O ) y ) e. ( Base ` R ) ) |
| 18 |
|
simpl |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> R e. Rng ) |
| 19 |
|
simpr3 |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> z e. ( Base ` R ) ) |
| 20 |
|
simpr2 |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> y e. ( Base ` R ) ) |
| 21 |
|
simpr1 |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> x e. ( Base ` R ) ) |
| 22 |
2 12
|
rngass |
|- ( ( R e. Rng /\ ( z e. ( Base ` R ) /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) ) -> ( ( z ( .r ` R ) y ) ( .r ` R ) x ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) ) |
| 23 |
18 19 20 21 22
|
syl13anc |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( z ( .r ` R ) y ) ( .r ` R ) x ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) ) |
| 24 |
23
|
eqcomd |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( y ( .r ` R ) x ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) ) |
| 25 |
14
|
oveq1i |
|- ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( ( y ( .r ` R ) x ) ( .r ` O ) z ) |
| 26 |
2 12 1 13
|
opprmul |
|- ( ( y ( .r ` R ) x ) ( .r ` O ) z ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) |
| 27 |
25 26
|
eqtri |
|- ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( z ( .r ` R ) ( y ( .r ` R ) x ) ) |
| 28 |
2 12 1 13
|
opprmul |
|- ( y ( .r ` O ) z ) = ( z ( .r ` R ) y ) |
| 29 |
28
|
oveq2i |
|- ( x ( .r ` O ) ( y ( .r ` O ) z ) ) = ( x ( .r ` O ) ( z ( .r ` R ) y ) ) |
| 30 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) ( z ( .r ` R ) y ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) |
| 31 |
29 30
|
eqtri |
|- ( x ( .r ` O ) ( y ( .r ` O ) z ) ) = ( ( z ( .r ` R ) y ) ( .r ` R ) x ) |
| 32 |
24 27 31
|
3eqtr4g |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( .r ` O ) y ) ( .r ` O ) z ) = ( x ( .r ` O ) ( y ( .r ` O ) z ) ) ) |
| 33 |
2 5 12
|
rngdir |
|- ( ( R e. Rng /\ ( y e. ( Base ` R ) /\ z e. ( Base ` R ) /\ x e. ( Base ` R ) ) ) -> ( ( y ( +g ` R ) z ) ( .r ` R ) x ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) ) |
| 34 |
18 20 19 21 33
|
syl13anc |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( y ( +g ` R ) z ) ( .r ` R ) x ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) ) |
| 35 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) ( .r ` R ) x ) |
| 36 |
2 12 1 13
|
opprmul |
|- ( x ( .r ` O ) z ) = ( z ( .r ` R ) x ) |
| 37 |
14 36
|
oveq12i |
|- ( ( x ( .r ` O ) y ) ( +g ` R ) ( x ( .r ` O ) z ) ) = ( ( y ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) x ) ) |
| 38 |
34 35 37
|
3eqtr4g |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( x ( .r ` O ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` O ) y ) ( +g ` R ) ( x ( .r ` O ) z ) ) ) |
| 39 |
2 5 12
|
rngdi |
|- ( ( R e. Rng /\ ( z e. ( Base ` R ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 40 |
18 19 21 20 39
|
syl13anc |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
| 41 |
2 12 1 13
|
opprmul |
|- ( ( x ( +g ` R ) y ) ( .r ` O ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) |
| 42 |
36 28
|
oveq12i |
|- ( ( x ( .r ` O ) z ) ( +g ` R ) ( y ( .r ` O ) z ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) |
| 43 |
40 41 42
|
3eqtr4g |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) ( .r ` O ) z ) = ( ( x ( .r ` O ) z ) ( +g ` R ) ( y ( .r ` O ) z ) ) ) |
| 44 |
4 7 8 11 17 32 38 43
|
isrngd |
|- ( R e. Rng -> O e. Rng ) |