| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgass3.b |
|- B = ( Base ` R ) |
| 2 |
|
mulgass3.m |
|- .x. = ( .g ` R ) |
| 3 |
|
mulgass3.t |
|- .X. = ( .r ` R ) |
| 4 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 5 |
4
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 6 |
5
|
adantr |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( oppR ` R ) e. Ring ) |
| 7 |
|
simpr1 |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> N e. ZZ ) |
| 8 |
|
simpr3 |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> Y e. B ) |
| 9 |
|
simpr2 |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> X e. B ) |
| 10 |
4 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
| 11 |
|
eqid |
|- ( .g ` ( oppR ` R ) ) = ( .g ` ( oppR ` R ) ) |
| 12 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
| 13 |
10 11 12
|
mulgass2 |
|- ( ( ( oppR ` R ) e. Ring /\ ( N e. ZZ /\ Y e. B /\ X e. B ) ) -> ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) ) |
| 14 |
6 7 8 9 13
|
syl13anc |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) ) |
| 15 |
1 3 4 12
|
opprmul |
|- ( ( N ( .g ` ( oppR ` R ) ) Y ) ( .r ` ( oppR ` R ) ) X ) = ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) |
| 16 |
1 3 4 12
|
opprmul |
|- ( Y ( .r ` ( oppR ` R ) ) X ) = ( X .X. Y ) |
| 17 |
16
|
oveq2i |
|- ( N ( .g ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) |
| 18 |
14 15 17
|
3eqtr3g |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) ) |
| 19 |
1
|
a1i |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B = ( Base ` R ) ) |
| 20 |
10
|
a1i |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B = ( Base ` ( oppR ` R ) ) ) |
| 21 |
|
ssv |
|- B C_ _V |
| 22 |
21
|
a1i |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> B C_ _V ) |
| 23 |
|
ovexd |
|- ( ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` R ) y ) e. _V ) |
| 24 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 25 |
4 24
|
oppradd |
|- ( +g ` R ) = ( +g ` ( oppR ` R ) ) |
| 26 |
25
|
oveqi |
|- ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` R ) ) y ) |
| 27 |
26
|
a1i |
|- ( ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` R ) ) y ) ) |
| 28 |
2 11 19 20 22 23 27
|
mulgpropd |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> .x. = ( .g ` ( oppR ` R ) ) ) |
| 29 |
28
|
oveqd |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( N .x. Y ) = ( N ( .g ` ( oppR ` R ) ) Y ) ) |
| 30 |
29
|
oveq2d |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N .x. Y ) ) = ( X .X. ( N ( .g ` ( oppR ` R ) ) Y ) ) ) |
| 31 |
28
|
oveqd |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( N .x. ( X .X. Y ) ) = ( N ( .g ` ( oppR ` R ) ) ( X .X. Y ) ) ) |
| 32 |
18 30 31
|
3eqtr4d |
|- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) -> ( X .X. ( N .x. Y ) ) = ( N .x. ( X .X. Y ) ) ) |