Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringidss.g | |
|
ringidss.b | |
||
ringidss.u | |
||
Assertion | ringidss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringidss.g | |
|
2 | ringidss.b | |
|
3 | ringidss.u | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | simp3 | |
|
8 | eqid | |
|
9 | 8 2 | mgpbas | |
10 | 1 9 | ressbas2 | |
11 | 10 | 3ad2ant2 | |
12 | 7 11 | eleqtrd | |
13 | simp2 | |
|
14 | 11 13 | eqsstrrd | |
15 | 14 | sselda | |
16 | fvex | |
|
17 | 11 16 | eqeltrdi | |
18 | eqid | |
|
19 | 8 18 | mgpplusg | |
20 | 1 19 | ressplusg | |
21 | 17 20 | syl | |
22 | 21 | adantr | |
23 | 22 | oveqd | |
24 | 2 18 3 | ringlidm | |
25 | 24 | 3ad2antl1 | |
26 | 23 25 | eqtr3d | |
27 | 15 26 | syldan | |
28 | 22 | oveqd | |
29 | 2 18 3 | ringridm | |
30 | 29 | 3ad2antl1 | |
31 | 28 30 | eqtr3d | |
32 | 15 31 | syldan | |
33 | 4 5 6 12 27 32 | ismgmid2 | |