Metamath Proof Explorer


Theorem ringidss

Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses ringidss.g M=mulGrpR𝑠A
ringidss.b B=BaseR
ringidss.u 1˙=1R
Assertion ringidss RRingAB1˙A1˙=0M

Proof

Step Hyp Ref Expression
1 ringidss.g M=mulGrpR𝑠A
2 ringidss.b B=BaseR
3 ringidss.u 1˙=1R
4 eqid BaseM=BaseM
5 eqid 0M=0M
6 eqid +M=+M
7 simp3 RRingAB1˙A1˙A
8 eqid mulGrpR=mulGrpR
9 8 2 mgpbas B=BasemulGrpR
10 1 9 ressbas2 ABA=BaseM
11 10 3ad2ant2 RRingAB1˙AA=BaseM
12 7 11 eleqtrd RRingAB1˙A1˙BaseM
13 simp2 RRingAB1˙AAB
14 11 13 eqsstrrd RRingAB1˙ABaseMB
15 14 sselda RRingAB1˙AyBaseMyB
16 fvex BaseMV
17 11 16 eqeltrdi RRingAB1˙AAV
18 eqid R=R
19 8 18 mgpplusg R=+mulGrpR
20 1 19 ressplusg AVR=+M
21 17 20 syl RRingAB1˙AR=+M
22 21 adantr RRingAB1˙AyBR=+M
23 22 oveqd RRingAB1˙AyB1˙Ry=1˙+My
24 2 18 3 ringlidm RRingyB1˙Ry=y
25 24 3ad2antl1 RRingAB1˙AyB1˙Ry=y
26 23 25 eqtr3d RRingAB1˙AyB1˙+My=y
27 15 26 syldan RRingAB1˙AyBaseM1˙+My=y
28 22 oveqd RRingAB1˙AyByR1˙=y+M1˙
29 2 18 3 ringridm RRingyByR1˙=y
30 29 3ad2antl1 RRingAB1˙AyByR1˙=y
31 28 30 eqtr3d RRingAB1˙AyBy+M1˙=y
32 15 31 syldan RRingAB1˙AyBaseMy+M1˙=y
33 4 5 6 12 27 32 ismgmid2 RRingAB1˙A1˙=0M