Metamath Proof Explorer


Theorem opprneg

Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses opprbas.1 O=opprR
opprneg.2 N=invgR
Assertion opprneg N=invgO

Proof

Step Hyp Ref Expression
1 opprbas.1 O=opprR
2 opprneg.2 N=invgR
3 eqid BaseR=BaseR
4 eqid +R=+R
5 eqid 0R=0R
6 3 4 5 2 grpinvfval N=xBaseRιyBaseR|y+Rx=0R
7 1 3 opprbas BaseR=BaseO
8 1 4 oppradd +R=+O
9 1 5 oppr0 0R=0O
10 eqid invgO=invgO
11 7 8 9 10 grpinvfval invgO=xBaseRιyBaseR|y+Rx=0R
12 6 11 eqtr4i N=invgO