Metamath Proof Explorer


Theorem opprsubg

Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)

Ref Expression
Hypothesis opprbas.1 O = opp r R
Assertion opprsubg SubGrp R = SubGrp O

Proof

Step Hyp Ref Expression
1 opprbas.1 O = opp r R
2 eqid Base R = Base R
3 1 2 opprbas Base R = Base O
4 eqid + R = + R
5 1 4 oppradd + R = + O
6 3 5 grpprop R Grp O Grp
7 biid x Base R x Base R
8 eqid R 𝑠 x = R 𝑠 x
9 8 2 ressbas x V x Base R = Base R 𝑠 x
10 9 elv x Base R = Base R 𝑠 x
11 eqid O 𝑠 x = O 𝑠 x
12 11 3 ressbas x V x Base R = Base O 𝑠 x
13 12 elv x Base R = Base O 𝑠 x
14 10 13 eqtr3i Base R 𝑠 x = Base O 𝑠 x
15 8 4 ressplusg x V + R = + R 𝑠 x
16 11 5 ressplusg x V + R = + O 𝑠 x
17 15 16 eqtr3d x V + R 𝑠 x = + O 𝑠 x
18 17 elv + R 𝑠 x = + O 𝑠 x
19 14 18 grpprop R 𝑠 x Grp O 𝑠 x Grp
20 6 7 19 3anbi123i R Grp x Base R R 𝑠 x Grp O Grp x Base R O 𝑠 x Grp
21 2 issubg x SubGrp R R Grp x Base R R 𝑠 x Grp
22 3 issubg x SubGrp O O Grp x Base R O 𝑠 x Grp
23 20 21 22 3bitr4i x SubGrp R x SubGrp O
24 23 eqriv SubGrp R = SubGrp O