Metamath Proof Explorer


Theorem grpprop

Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses grpprop.b BaseK=BaseL
grpprop.p +K=+L
Assertion grpprop KGrpLGrp

Proof

Step Hyp Ref Expression
1 grpprop.b BaseK=BaseL
2 grpprop.p +K=+L
3 eqidd BaseK=BaseK
4 1 a1i BaseK=BaseL
5 2 oveqi x+Ky=x+Ly
6 5 a1i xBaseKyBaseKx+Ky=x+Ly
7 3 4 6 grppropd KGrpLGrp
8 7 mptru KGrpLGrp