Metamath Proof Explorer


Theorem grppropstr

Description: Generalize a specific 2-element group L to show that any set K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grppropstr.b Base K = B
grppropstr.p + K = + ˙
grppropstr.l L = Base ndx B + ndx + ˙
Assertion grppropstr K Grp L Grp

Proof

Step Hyp Ref Expression
1 grppropstr.b Base K = B
2 grppropstr.p + K = + ˙
3 grppropstr.l L = Base ndx B + ndx + ˙
4 fvex Base K V
5 1 4 eqeltrri B V
6 3 grpbase B V B = Base L
7 5 6 ax-mp B = Base L
8 1 7 eqtri Base K = Base L
9 fvex + K V
10 2 9 eqeltrri + ˙ V
11 3 grpplusg + ˙ V + ˙ = + L
12 10 11 ax-mp + ˙ = + L
13 2 12 eqtri + K = + L
14 8 13 grpprop K Grp L Grp