Step |
Hyp |
Ref |
Expression |
1 |
|
grppropstr.b |
⊢ ( Base ‘ 𝐾 ) = 𝐵 |
2 |
|
grppropstr.p |
⊢ ( +g ‘ 𝐾 ) = + |
3 |
|
grppropstr.l |
⊢ 𝐿 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } |
4 |
|
fvex |
⊢ ( Base ‘ 𝐾 ) ∈ V |
5 |
1 4
|
eqeltrri |
⊢ 𝐵 ∈ V |
6 |
3
|
grpbase |
⊢ ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐿 ) ) |
7 |
5 6
|
ax-mp |
⊢ 𝐵 = ( Base ‘ 𝐿 ) |
8 |
1 7
|
eqtri |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) |
9 |
|
fvex |
⊢ ( +g ‘ 𝐾 ) ∈ V |
10 |
2 9
|
eqeltrri |
⊢ + ∈ V |
11 |
3
|
grpplusg |
⊢ ( + ∈ V → + = ( +g ‘ 𝐿 ) ) |
12 |
10 11
|
ax-mp |
⊢ + = ( +g ‘ 𝐿 ) |
13 |
2 12
|
eqtri |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) |
14 |
8 13
|
grpprop |
⊢ ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) |