Metamath Proof Explorer


Theorem grppropstr

Description: Generalize a specific 2-element group L to show that any set K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grppropstr.b ( Base ‘ 𝐾 ) = 𝐵
grppropstr.p ( +g𝐾 ) = +
grppropstr.l 𝐿 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ }
Assertion grppropstr ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp )

Proof

Step Hyp Ref Expression
1 grppropstr.b ( Base ‘ 𝐾 ) = 𝐵
2 grppropstr.p ( +g𝐾 ) = +
3 grppropstr.l 𝐿 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ }
4 fvex ( Base ‘ 𝐾 ) ∈ V
5 1 4 eqeltrri 𝐵 ∈ V
6 3 grpbase ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐿 ) )
7 5 6 ax-mp 𝐵 = ( Base ‘ 𝐿 )
8 1 7 eqtri ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 )
9 fvex ( +g𝐾 ) ∈ V
10 2 9 eqeltrri + ∈ V
11 3 grpplusg ( + ∈ V → + = ( +g𝐿 ) )
12 10 11 ax-mp + = ( +g𝐿 )
13 2 12 eqtri ( +g𝐾 ) = ( +g𝐿 )
14 8 13 grpprop ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp )