Description: The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by AV, 27-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpfn.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
Assertion | grpplusg | ⊢ ( + ∈ 𝑉 → + = ( +g ‘ 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfn.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
2 | basendxltplusgndx | ⊢ ( Base ‘ ndx ) < ( +g ‘ ndx ) | |
3 | plusgndxnn | ⊢ ( +g ‘ ndx ) ∈ ℕ | |
4 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
5 | 1 2 3 4 | 2strop1 | ⊢ ( + ∈ 𝑉 → + = ( +g ‘ 𝐺 ) ) |