Description: Obsolete version of grpplusg as of 27-Oct-2024. The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013) (Revised by Mario Carneiro, 30-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpfn.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
Assertion | grpplusgOLD | ⊢ ( + ∈ 𝑉 → + = ( +g ‘ 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfn.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
2 | df-plusg | ⊢ +g = Slot 2 | |
3 | 1lt2 | ⊢ 1 < 2 | |
4 | 2nn | ⊢ 2 ∈ ℕ | |
5 | 1 2 3 4 | 2strop | ⊢ ( + ∈ 𝑉 → + = ( +g ‘ 𝐺 ) ) |