Metamath Proof Explorer


Theorem opprneg

Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses opprbas.1
|- O = ( oppR ` R )
opprneg.2
|- N = ( invg ` R )
Assertion opprneg
|- N = ( invg ` O )

Proof

Step Hyp Ref Expression
1 opprbas.1
 |-  O = ( oppR ` R )
2 opprneg.2
 |-  N = ( invg ` R )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 eqid
 |-  ( +g ` R ) = ( +g ` R )
5 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
6 3 4 5 2 grpinvfval
 |-  N = ( x e. ( Base ` R ) |-> ( iota_ y e. ( Base ` R ) ( y ( +g ` R ) x ) = ( 0g ` R ) ) )
7 1 3 opprbas
 |-  ( Base ` R ) = ( Base ` O )
8 1 4 oppradd
 |-  ( +g ` R ) = ( +g ` O )
9 1 5 oppr0
 |-  ( 0g ` R ) = ( 0g ` O )
10 eqid
 |-  ( invg ` O ) = ( invg ` O )
11 7 8 9 10 grpinvfval
 |-  ( invg ` O ) = ( x e. ( Base ` R ) |-> ( iota_ y e. ( Base ` R ) ( y ( +g ` R ) x ) = ( 0g ` R ) ) )
12 6 11 eqtr4i
 |-  N = ( invg ` O )