Metamath Proof Explorer


Theorem oppr0

Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprbas.1
|- O = ( oppR ` R )
oppr0.2
|- .0. = ( 0g ` R )
Assertion oppr0
|- .0. = ( 0g ` O )

Proof

Step Hyp Ref Expression
1 opprbas.1
 |-  O = ( oppR ` R )
2 oppr0.2
 |-  .0. = ( 0g ` R )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 eqid
 |-  ( +g ` R ) = ( +g ` R )
5 3 4 2 grpidval
 |-  .0. = ( iota y ( y e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( y ( +g ` R ) x ) = x /\ ( x ( +g ` R ) y ) = x ) ) )
6 1 3 opprbas
 |-  ( Base ` R ) = ( Base ` O )
7 1 4 oppradd
 |-  ( +g ` R ) = ( +g ` O )
8 eqid
 |-  ( 0g ` O ) = ( 0g ` O )
9 6 7 8 grpidval
 |-  ( 0g ` O ) = ( iota y ( y e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( y ( +g ` R ) x ) = x /\ ( x ( +g ` R ) y ) = x ) ) )
10 5 9 eqtr4i
 |-  .0. = ( 0g ` O )