Metamath Proof Explorer


Theorem dfur2

Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses dfur2.b B=BaseR
dfur2.t ·˙=R
dfur2.u 1˙=1R
Assertion dfur2 1˙=ιe|eBxBe·˙x=xx·˙e=x

Proof

Step Hyp Ref Expression
1 dfur2.b B=BaseR
2 dfur2.t ·˙=R
3 dfur2.u 1˙=1R
4 eqid mulGrpR=mulGrpR
5 4 1 mgpbas B=BasemulGrpR
6 4 2 mgpplusg ·˙=+mulGrpR
7 4 3 ringidval 1˙=0mulGrpR
8 5 6 7 grpidval 1˙=ιe|eBxBe·˙x=xx·˙e=x