Metamath Proof Explorer


Theorem prdscrngd

Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypotheses prdscrngd.y Y=S𝑠R
prdscrngd.i φIW
prdscrngd.s φSV
prdscrngd.r φR:ICRing
Assertion prdscrngd φYCRing

Proof

Step Hyp Ref Expression
1 prdscrngd.y Y=S𝑠R
2 prdscrngd.i φIW
3 prdscrngd.s φSV
4 prdscrngd.r φR:ICRing
5 crngring xCRingxRing
6 5 ssriv CRingRing
7 fss R:ICRingCRingRingR:IRing
8 4 6 7 sylancl φR:IRing
9 1 2 3 8 prdsringd φYRing
10 eqid S𝑠mulGrpR=S𝑠mulGrpR
11 fnmgp mulGrpFnV
12 ssv CRingV
13 fnssres mulGrpFnVCRingVmulGrpCRingFnCRing
14 11 12 13 mp2an mulGrpCRingFnCRing
15 fvres xCRingmulGrpCRingx=mulGrpx
16 eqid mulGrpx=mulGrpx
17 16 crngmgp xCRingmulGrpxCMnd
18 15 17 eqeltrd xCRingmulGrpCRingxCMnd
19 18 rgen xCRingmulGrpCRingxCMnd
20 ffnfv mulGrpCRing:CRingCMndmulGrpCRingFnCRingxCRingmulGrpCRingxCMnd
21 14 19 20 mpbir2an mulGrpCRing:CRingCMnd
22 fco2 mulGrpCRing:CRingCMndR:ICRingmulGrpR:ICMnd
23 21 4 22 sylancr φmulGrpR:ICMnd
24 10 2 3 23 prdscmnd φS𝑠mulGrpRCMnd
25 eqidd φBasemulGrpY=BasemulGrpY
26 eqid mulGrpY=mulGrpY
27 4 ffnd φRFnI
28 1 26 10 2 3 27 prdsmgp φBasemulGrpY=BaseS𝑠mulGrpR+mulGrpY=+S𝑠mulGrpR
29 28 simpld φBasemulGrpY=BaseS𝑠mulGrpR
30 28 simprd φ+mulGrpY=+S𝑠mulGrpR
31 30 oveqdr φxBasemulGrpYyBasemulGrpYx+mulGrpYy=x+S𝑠mulGrpRy
32 25 29 31 cmnpropd φmulGrpYCMndS𝑠mulGrpRCMnd
33 24 32 mpbird φmulGrpYCMnd
34 26 iscrng YCRingYRingmulGrpYCMnd
35 9 33 34 sylanbrc φYCRing