Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdscrngd.y | |
|
prdscrngd.i | |
||
prdscrngd.s | |
||
prdscrngd.r | |
||
Assertion | prdscrngd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdscrngd.y | |
|
2 | prdscrngd.i | |
|
3 | prdscrngd.s | |
|
4 | prdscrngd.r | |
|
5 | crngring | |
|
6 | 5 | ssriv | |
7 | fss | |
|
8 | 4 6 7 | sylancl | |
9 | 1 2 3 8 | prdsringd | |
10 | eqid | |
|
11 | fnmgp | |
|
12 | ssv | |
|
13 | fnssres | |
|
14 | 11 12 13 | mp2an | |
15 | fvres | |
|
16 | eqid | |
|
17 | 16 | crngmgp | |
18 | 15 17 | eqeltrd | |
19 | 18 | rgen | |
20 | ffnfv | |
|
21 | 14 19 20 | mpbir2an | |
22 | fco2 | |
|
23 | 21 4 22 | sylancr | |
24 | 10 2 3 23 | prdscmnd | |
25 | eqidd | |
|
26 | eqid | |
|
27 | 4 | ffnd | |
28 | 1 26 10 2 3 27 | prdsmgp | |
29 | 28 | simpld | |
30 | 28 | simprd | |
31 | 30 | oveqdr | |
32 | 25 29 31 | cmnpropd | |
33 | 24 32 | mpbird | |
34 | 26 | iscrng | |
35 | 9 33 34 | sylanbrc | |