Metamath Proof Explorer


Theorem mgpds

Description: Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mgpbas.1 M=mulGrpR
mgpds.2 B=distR
Assertion mgpds B=distM

Proof

Step Hyp Ref Expression
1 mgpbas.1 M=mulGrpR
2 mgpds.2 B=distR
3 eqid R=R
4 1 3 mgpval M=RsSet+ndxR
5 dsid dist=Slotdistndx
6 dsndxnplusgndx distndx+ndx
7 4 5 6 setsplusg distR=distM
8 2 7 eqtri B=distM