Description: Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgpbas.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
mgpds.2 | ⊢ 𝐵 = ( dist ‘ 𝑅 ) | ||
Assertion | mgpds | ⊢ 𝐵 = ( dist ‘ 𝑀 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpbas.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
2 | mgpds.2 | ⊢ 𝐵 = ( dist ‘ 𝑅 ) | |
3 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
4 | 1 3 | mgpval | ⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
5 | dsid | ⊢ dist = Slot ( dist ‘ ndx ) | |
6 | dsndxnplusgndx | ⊢ ( dist ‘ ndx ) ≠ ( +g ‘ ndx ) | |
7 | 4 5 6 | setsplusg | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑀 ) |
8 | 2 7 | eqtri | ⊢ 𝐵 = ( dist ‘ 𝑀 ) |