Description: Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgpbas.1 | |- M = ( mulGrp ` R ) |
|
mgpds.2 | |- B = ( dist ` R ) |
||
Assertion | mgpds | |- B = ( dist ` M ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpbas.1 | |- M = ( mulGrp ` R ) |
|
2 | mgpds.2 | |- B = ( dist ` R ) |
|
3 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
4 | 1 3 | mgpval | |- M = ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) |
5 | dsid | |- dist = Slot ( dist ` ndx ) |
|
6 | dsndxnplusgndx | |- ( dist ` ndx ) =/= ( +g ` ndx ) |
|
7 | 4 5 6 | setsplusg | |- ( dist ` R ) = ( dist ` M ) |
8 | 2 7 | eqtri | |- B = ( dist ` M ) |