Metamath Proof Explorer


Theorem oppr1

Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprbas.1 O=opprR
oppr1.2 1˙=1R
Assertion oppr1 1˙=1O

Proof

Step Hyp Ref Expression
1 opprbas.1 O=opprR
2 oppr1.2 1˙=1R
3 eqid BaseR=BaseR
4 eqid R=R
5 eqid O=O
6 3 4 1 5 opprmul xOy=yRx
7 6 eqeq1i xOy=yyRx=y
8 3 4 1 5 opprmul yOx=xRy
9 8 eqeq1i yOx=yxRy=y
10 7 9 anbi12ci xOy=yyOx=yxRy=yyRx=y
11 10 ralbii yBaseRxOy=yyOx=yyBaseRxRy=yyRx=y
12 11 anbi2i xBaseRyBaseRxOy=yyOx=yxBaseRyBaseRxRy=yyRx=y
13 12 iotabii ιx|xBaseRyBaseRxOy=yyOx=y=ιx|xBaseRyBaseRxRy=yyRx=y
14 eqid mulGrpO=mulGrpO
15 1 3 opprbas BaseR=BaseO
16 14 15 mgpbas BaseR=BasemulGrpO
17 14 5 mgpplusg O=+mulGrpO
18 eqid 0mulGrpO=0mulGrpO
19 16 17 18 grpidval 0mulGrpO=ιx|xBaseRyBaseRxOy=yyOx=y
20 eqid mulGrpR=mulGrpR
21 20 3 mgpbas BaseR=BasemulGrpR
22 20 4 mgpplusg R=+mulGrpR
23 eqid 0mulGrpR=0mulGrpR
24 21 22 23 grpidval 0mulGrpR=ιx|xBaseRyBaseRxRy=yyRx=y
25 13 19 24 3eqtr4i 0mulGrpO=0mulGrpR
26 eqid 1O=1O
27 14 26 ringidval 1O=0mulGrpO
28 20 2 ringidval 1˙=0mulGrpR
29 25 27 28 3eqtr4ri 1˙=1O