| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasring.u |
|
| 2 |
|
imasring.v |
|
| 3 |
|
imasring.p |
|
| 4 |
|
imasring.t |
|
| 5 |
|
imasring.o |
|
| 6 |
|
imasring.f |
|
| 7 |
|
imasring.e1 |
|
| 8 |
|
imasring.e2 |
|
| 9 |
|
imasring.r |
|
| 10 |
1 2 6 9
|
imasbas |
|
| 11 |
|
eqidd |
|
| 12 |
|
eqidd |
|
| 13 |
3
|
a1i |
|
| 14 |
|
ringgrp |
|
| 15 |
9 14
|
syl |
|
| 16 |
|
eqid |
|
| 17 |
1 2 13 6 7 15 16
|
imasgrp |
|
| 18 |
17
|
simpld |
|
| 19 |
|
eqid |
|
| 20 |
9
|
adantr |
|
| 21 |
|
simprl |
|
| 22 |
2
|
adantr |
|
| 23 |
21 22
|
eleqtrd |
|
| 24 |
|
simprr |
|
| 25 |
24 22
|
eleqtrd |
|
| 26 |
|
eqid |
|
| 27 |
26 4
|
ringcl |
|
| 28 |
20 23 25 27
|
syl3anc |
|
| 29 |
28 22
|
eleqtrrd |
|
| 30 |
29
|
caovclg |
|
| 31 |
6 8 1 2 9 4 19 30
|
imasmulf |
|
| 32 |
|
fovcdm |
|
| 33 |
31 32
|
syl3an1 |
|
| 34 |
|
forn |
|
| 35 |
6 34
|
syl |
|
| 36 |
35
|
eleq2d |
|
| 37 |
35
|
eleq2d |
|
| 38 |
35
|
eleq2d |
|
| 39 |
36 37 38
|
3anbi123d |
|
| 40 |
|
fofn |
|
| 41 |
6 40
|
syl |
|
| 42 |
|
fvelrnb |
|
| 43 |
|
fvelrnb |
|
| 44 |
|
fvelrnb |
|
| 45 |
42 43 44
|
3anbi123d |
|
| 46 |
41 45
|
syl |
|
| 47 |
39 46
|
bitr3d |
|
| 48 |
|
3reeanv |
|
| 49 |
47 48
|
bitr4di |
|
| 50 |
9
|
adantr |
|
| 51 |
|
simp2 |
|
| 52 |
2
|
3ad2ant1 |
|
| 53 |
51 52
|
eleqtrd |
|
| 54 |
53
|
3adant3r3 |
|
| 55 |
|
simp3 |
|
| 56 |
55 52
|
eleqtrd |
|
| 57 |
56
|
3adant3r3 |
|
| 58 |
|
simpr3 |
|
| 59 |
2
|
adantr |
|
| 60 |
58 59
|
eleqtrd |
|
| 61 |
26 4
|
ringass |
|
| 62 |
50 54 57 60 61
|
syl13anc |
|
| 63 |
62
|
fveq2d |
|
| 64 |
|
simpl |
|
| 65 |
29
|
caovclg |
|
| 66 |
65
|
3adantr3 |
|
| 67 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 68 |
64 66 58 67
|
syl3anc |
|
| 69 |
|
simpr1 |
|
| 70 |
29
|
caovclg |
|
| 71 |
70
|
3adantr1 |
|
| 72 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 73 |
64 69 71 72
|
syl3anc |
|
| 74 |
63 68 73
|
3eqtr4d |
|
| 75 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 76 |
75
|
3adant3r3 |
|
| 77 |
76
|
oveq1d |
|
| 78 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 79 |
78
|
3adant3r1 |
|
| 80 |
79
|
oveq2d |
|
| 81 |
74 77 80
|
3eqtr4d |
|
| 82 |
|
simp1 |
|
| 83 |
|
simp2 |
|
| 84 |
82 83
|
oveq12d |
|
| 85 |
|
simp3 |
|
| 86 |
84 85
|
oveq12d |
|
| 87 |
83 85
|
oveq12d |
|
| 88 |
82 87
|
oveq12d |
|
| 89 |
86 88
|
eqeq12d |
|
| 90 |
81 89
|
syl5ibcom |
|
| 91 |
90
|
3exp2 |
|
| 92 |
91
|
imp32 |
|
| 93 |
92
|
rexlimdv |
|
| 94 |
93
|
rexlimdvva |
|
| 95 |
49 94
|
sylbid |
|
| 96 |
95
|
imp |
|
| 97 |
26 3 4
|
ringdi |
|
| 98 |
50 54 57 60 97
|
syl13anc |
|
| 99 |
98
|
fveq2d |
|
| 100 |
26 3
|
ringacl |
|
| 101 |
20 23 25 100
|
syl3anc |
|
| 102 |
101 22
|
eleqtrrd |
|
| 103 |
102
|
caovclg |
|
| 104 |
103
|
3adantr1 |
|
| 105 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 106 |
64 69 104 105
|
syl3anc |
|
| 107 |
29
|
caovclg |
|
| 108 |
107
|
3adantr2 |
|
| 109 |
|
eqid |
|
| 110 |
6 7 1 2 9 3 109
|
imasaddval |
|
| 111 |
64 66 108 110
|
syl3anc |
|
| 112 |
99 106 111
|
3eqtr4d |
|
| 113 |
6 7 1 2 9 3 109
|
imasaddval |
|
| 114 |
113
|
3adant3r1 |
|
| 115 |
114
|
oveq2d |
|
| 116 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 117 |
116
|
3adant3r2 |
|
| 118 |
76 117
|
oveq12d |
|
| 119 |
112 115 118
|
3eqtr4d |
|
| 120 |
83 85
|
oveq12d |
|
| 121 |
82 120
|
oveq12d |
|
| 122 |
82 85
|
oveq12d |
|
| 123 |
84 122
|
oveq12d |
|
| 124 |
121 123
|
eqeq12d |
|
| 125 |
119 124
|
syl5ibcom |
|
| 126 |
125
|
3exp2 |
|
| 127 |
126
|
imp32 |
|
| 128 |
127
|
rexlimdv |
|
| 129 |
128
|
rexlimdvva |
|
| 130 |
49 129
|
sylbid |
|
| 131 |
130
|
imp |
|
| 132 |
26 3 4
|
ringdir |
|
| 133 |
50 54 57 60 132
|
syl13anc |
|
| 134 |
133
|
fveq2d |
|
| 135 |
102
|
caovclg |
|
| 136 |
135
|
3adantr3 |
|
| 137 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 138 |
64 136 58 137
|
syl3anc |
|
| 139 |
6 7 1 2 9 3 109
|
imasaddval |
|
| 140 |
64 108 71 139
|
syl3anc |
|
| 141 |
134 138 140
|
3eqtr4d |
|
| 142 |
6 7 1 2 9 3 109
|
imasaddval |
|
| 143 |
142
|
3adant3r3 |
|
| 144 |
143
|
oveq1d |
|
| 145 |
117 79
|
oveq12d |
|
| 146 |
141 144 145
|
3eqtr4d |
|
| 147 |
82 83
|
oveq12d |
|
| 148 |
147 85
|
oveq12d |
|
| 149 |
122 87
|
oveq12d |
|
| 150 |
148 149
|
eqeq12d |
|
| 151 |
146 150
|
syl5ibcom |
|
| 152 |
151
|
3exp2 |
|
| 153 |
152
|
imp32 |
|
| 154 |
153
|
rexlimdv |
|
| 155 |
154
|
rexlimdvva |
|
| 156 |
49 155
|
sylbid |
|
| 157 |
156
|
imp |
|
| 158 |
|
fof |
|
| 159 |
6 158
|
syl |
|
| 160 |
26 5
|
ringidcl |
|
| 161 |
9 160
|
syl |
|
| 162 |
161 2
|
eleqtrrd |
|
| 163 |
159 162
|
ffvelcdmd |
|
| 164 |
41 42
|
syl |
|
| 165 |
36 164
|
bitr3d |
|
| 166 |
|
simpl |
|
| 167 |
162
|
adantr |
|
| 168 |
|
simpr |
|
| 169 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 170 |
166 167 168 169
|
syl3anc |
|
| 171 |
2
|
eleq2d |
|
| 172 |
171
|
biimpa |
|
| 173 |
26 4 5
|
ringlidm |
|
| 174 |
9 172 173
|
syl2an2r |
|
| 175 |
174
|
fveq2d |
|
| 176 |
170 175
|
eqtrd |
|
| 177 |
|
oveq2 |
|
| 178 |
|
id |
|
| 179 |
177 178
|
eqeq12d |
|
| 180 |
176 179
|
syl5ibcom |
|
| 181 |
180
|
rexlimdva |
|
| 182 |
165 181
|
sylbid |
|
| 183 |
182
|
imp |
|
| 184 |
6 8 1 2 9 4 19
|
imasmulval |
|
| 185 |
167 184
|
mpd3an3 |
|
| 186 |
26 4 5
|
ringridm |
|
| 187 |
9 172 186
|
syl2an2r |
|
| 188 |
187
|
fveq2d |
|
| 189 |
185 188
|
eqtrd |
|
| 190 |
|
oveq1 |
|
| 191 |
190 178
|
eqeq12d |
|
| 192 |
189 191
|
syl5ibcom |
|
| 193 |
192
|
rexlimdva |
|
| 194 |
165 193
|
sylbid |
|
| 195 |
194
|
imp |
|
| 196 |
10 11 12 18 33 96 131 157 163 183 195
|
isringd |
|
| 197 |
163 10
|
eleqtrd |
|
| 198 |
10
|
eleq2d |
|
| 199 |
182 194
|
jcad |
|
| 200 |
198 199
|
sylbird |
|
| 201 |
200
|
ralrimiv |
|
| 202 |
|
eqid |
|
| 203 |
|
eqid |
|
| 204 |
202 19 203
|
isringid |
|
| 205 |
196 204
|
syl |
|
| 206 |
197 201 205
|
mpbi2and |
|
| 207 |
206
|
eqcomd |
|
| 208 |
196 207
|
jca |
|