Metamath Proof Explorer


Theorem dvdsunit

Description: A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dvdsunit.1 U=UnitR
dvdsunit.3 ˙=rR
Assertion dvdsunit RCRingY˙XXUYU

Proof

Step Hyp Ref Expression
1 dvdsunit.1 U=UnitR
2 dvdsunit.3 ˙=rR
3 crngring RCRingRRing
4 eqid BaseR=BaseR
5 4 2 dvdsrtr RRingY˙XX˙1RY˙1R
6 5 3expia RRingY˙XX˙1RY˙1R
7 3 6 sylan RCRingY˙XX˙1RY˙1R
8 eqid 1R=1R
9 1 8 2 crngunit RCRingXUX˙1R
10 9 adantr RCRingY˙XXUX˙1R
11 1 8 2 crngunit RCRingYUY˙1R
12 11 adantr RCRingY˙XYUY˙1R
13 7 10 12 3imtr4d RCRingY˙XXUYU
14 13 3impia RCRingY˙XXUYU