Metamath Proof Explorer


Theorem unitmulcl

Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitmulcl.1 U=UnitR
unitmulcl.2 ·˙=R
Assertion unitmulcl RRingXUYUX·˙YU

Proof

Step Hyp Ref Expression
1 unitmulcl.1 U=UnitR
2 unitmulcl.2 ·˙=R
3 simp1 RRingXUYURRing
4 simp3 RRingXUYUYU
5 eqid BaseR=BaseR
6 5 1 unitcl YUYBaseR
7 4 6 syl RRingXUYUYBaseR
8 simp2 RRingXUYUXU
9 eqid 1R=1R
10 eqid rR=rR
11 eqid opprR=opprR
12 eqid ropprR=ropprR
13 1 9 10 11 12 isunit XUXrR1RXropprR1R
14 8 13 sylib RRingXUYUXrR1RXropprR1R
15 14 simpld RRingXUYUXrR1R
16 5 10 2 dvdsrmul1 RRingYBaseRXrR1RX·˙YrR1R·˙Y
17 3 7 15 16 syl3anc RRingXUYUX·˙YrR1R·˙Y
18 5 2 9 ringlidm RRingYBaseR1R·˙Y=Y
19 3 7 18 syl2anc RRingXUYU1R·˙Y=Y
20 17 19 breqtrd RRingXUYUX·˙YrRY
21 1 9 10 11 12 isunit YUYrR1RYropprR1R
22 4 21 sylib RRingXUYUYrR1RYropprR1R
23 22 simpld RRingXUYUYrR1R
24 5 10 dvdsrtr RRingX·˙YrRYYrR1RX·˙YrR1R
25 3 20 23 24 syl3anc RRingXUYUX·˙YrR1R
26 11 opprring RRingopprRRing
27 3 26 syl RRingXUYUopprRRing
28 eqid opprR=opprR
29 5 2 11 28 opprmul YopprRX=X·˙Y
30 5 1 unitcl XUXBaseR
31 8 30 syl RRingXUYUXBaseR
32 22 simprd RRingXUYUYropprR1R
33 11 5 opprbas BaseR=BaseopprR
34 33 12 28 dvdsrmul1 opprRRingXBaseRYropprR1RYopprRXropprR1RopprRX
35 27 31 32 34 syl3anc RRingXUYUYopprRXropprR1RopprRX
36 5 2 11 28 opprmul 1RopprRX=X·˙1R
37 5 2 9 ringridm RRingXBaseRX·˙1R=X
38 3 31 37 syl2anc RRingXUYUX·˙1R=X
39 36 38 eqtrid RRingXUYU1RopprRX=X
40 35 39 breqtrd RRingXUYUYopprRXropprRX
41 29 40 eqbrtrrid RRingXUYUX·˙YropprRX
42 14 simprd RRingXUYUXropprR1R
43 33 12 dvdsrtr opprRRingX·˙YropprRXXropprR1RX·˙YropprR1R
44 27 41 42 43 syl3anc RRingXUYUX·˙YropprR1R
45 1 9 10 11 12 isunit X·˙YUX·˙YrR1RX·˙YropprR1R
46 25 44 45 sylanbrc RRingXUYUX·˙YU