Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitmulcl.1 | |
|
unitmulcl.2 | |
||
Assertion | unitmulcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitmulcl.1 | |
|
2 | unitmulcl.2 | |
|
3 | simp1 | |
|
4 | simp3 | |
|
5 | eqid | |
|
6 | 5 1 | unitcl | |
7 | 4 6 | syl | |
8 | simp2 | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 1 9 10 11 12 | isunit | |
14 | 8 13 | sylib | |
15 | 14 | simpld | |
16 | 5 10 2 | dvdsrmul1 | |
17 | 3 7 15 16 | syl3anc | |
18 | 5 2 9 | ringlidm | |
19 | 3 7 18 | syl2anc | |
20 | 17 19 | breqtrd | |
21 | 1 9 10 11 12 | isunit | |
22 | 4 21 | sylib | |
23 | 22 | simpld | |
24 | 5 10 | dvdsrtr | |
25 | 3 20 23 24 | syl3anc | |
26 | 11 | opprring | |
27 | 3 26 | syl | |
28 | eqid | |
|
29 | 5 2 11 28 | opprmul | |
30 | 5 1 | unitcl | |
31 | 8 30 | syl | |
32 | 22 | simprd | |
33 | 11 5 | opprbas | |
34 | 33 12 28 | dvdsrmul1 | |
35 | 27 31 32 34 | syl3anc | |
36 | 5 2 11 28 | opprmul | |
37 | 5 2 9 | ringridm | |
38 | 3 31 37 | syl2anc | |
39 | 36 38 | eqtrid | |
40 | 35 39 | breqtrd | |
41 | 29 40 | eqbrtrrid | |
42 | 14 | simprd | |
43 | 33 12 | dvdsrtr | |
44 | 27 41 42 43 | syl3anc | |
45 | 1 9 10 11 12 | isunit | |
46 | 25 44 45 | sylanbrc | |