Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsr.1 | |
|
dvdsr.2 | |
||
Assertion | dvdsrtr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr.1 | |
|
2 | dvdsr.2 | |
|
3 | eqid | |
|
4 | 1 2 3 | dvdsr | |
5 | 1 2 3 | dvdsr | |
6 | 4 5 | anbi12i | |
7 | an4 | |
|
8 | 6 7 | bitri | |
9 | reeanv | |
|
10 | simplrl | |
|
11 | simpll | |
|
12 | simprr | |
|
13 | simprl | |
|
14 | 1 3 | ringcl | |
15 | 11 12 13 14 | syl3anc | |
16 | 1 2 3 | dvdsrmul | |
17 | 10 15 16 | syl2anc | |
18 | 1 3 | ringass | |
19 | 11 12 13 10 18 | syl13anc | |
20 | 17 19 | breqtrd | |
21 | oveq2 | |
|
22 | id | |
|
23 | 21 22 | sylan9eq | |
24 | 23 | breq2d | |
25 | 20 24 | syl5ibcom | |
26 | 25 | rexlimdvva | |
27 | 9 26 | biimtrrid | |
28 | 27 | expimpd | |
29 | 8 28 | biimtrid | |
30 | 29 | 3impib | |