Metamath Proof Explorer


Theorem dvdsrtr

Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
Assertion dvdsrtr RRingY˙ZZ˙XY˙X

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 eqid R=R
4 1 2 3 dvdsr Y˙ZYByByRY=Z
5 1 2 3 dvdsr Z˙XZBxBxRZ=X
6 4 5 anbi12i Y˙ZZ˙XYByByRY=ZZBxBxRZ=X
7 an4 YByByRY=ZZBxBxRZ=XYBZByByRY=ZxBxRZ=X
8 6 7 bitri Y˙ZZ˙XYBZByByRY=ZxBxRZ=X
9 reeanv yBxByRY=ZxRZ=XyByRY=ZxBxRZ=X
10 simplrl RRingYBZByBxBYB
11 simpll RRingYBZByBxBRRing
12 simprr RRingYBZByBxBxB
13 simprl RRingYBZByBxByB
14 1 3 ringcl RRingxByBxRyB
15 11 12 13 14 syl3anc RRingYBZByBxBxRyB
16 1 2 3 dvdsrmul YBxRyBY˙xRyRY
17 10 15 16 syl2anc RRingYBZByBxBY˙xRyRY
18 1 3 ringass RRingxByBYBxRyRY=xRyRY
19 11 12 13 10 18 syl13anc RRingYBZByBxBxRyRY=xRyRY
20 17 19 breqtrd RRingYBZByBxBY˙xRyRY
21 oveq2 yRY=ZxRyRY=xRZ
22 id xRZ=XxRZ=X
23 21 22 sylan9eq yRY=ZxRZ=XxRyRY=X
24 23 breq2d yRY=ZxRZ=XY˙xRyRYY˙X
25 20 24 syl5ibcom RRingYBZByBxByRY=ZxRZ=XY˙X
26 25 rexlimdvva RRingYBZByBxByRY=ZxRZ=XY˙X
27 9 26 biimtrrid RRingYBZByByRY=ZxBxRZ=XY˙X
28 27 expimpd RRingYBZByByRY=ZxBxRZ=XY˙X
29 8 28 biimtrid RRingY˙ZZ˙XY˙X
30 29 3impib RRingY˙ZZ˙XY˙X