Metamath Proof Explorer


Theorem crngunit

Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses crngunit.1 U=UnitR
crngunit.2 1˙=1R
crngunit.3 ˙=rR
Assertion crngunit RCRingXUX˙1˙

Proof

Step Hyp Ref Expression
1 crngunit.1 U=UnitR
2 crngunit.2 1˙=1R
3 crngunit.3 ˙=rR
4 eqid BaseR=BaseR
5 eqid R=R
6 eqid opprR=opprR
7 eqid opprR=opprR
8 4 5 6 7 crngoppr RCRingyBaseRXBaseRyRX=yopprRX
9 8 3expa RCRingyBaseRXBaseRyRX=yopprRX
10 9 eqcomd RCRingyBaseRXBaseRyopprRX=yRX
11 10 an32s RCRingXBaseRyBaseRyopprRX=yRX
12 11 eqeq1d RCRingXBaseRyBaseRyopprRX=1˙yRX=1˙
13 12 rexbidva RCRingXBaseRyBaseRyopprRX=1˙yBaseRyRX=1˙
14 13 pm5.32da RCRingXBaseRyBaseRyopprRX=1˙XBaseRyBaseRyRX=1˙
15 6 4 opprbas BaseR=BaseopprR
16 eqid ropprR=ropprR
17 15 16 7 dvdsr XropprR1˙XBaseRyBaseRyopprRX=1˙
18 4 3 5 dvdsr X˙1˙XBaseRyBaseRyRX=1˙
19 14 17 18 3bitr4g RCRingXropprR1˙X˙1˙
20 19 anbi2d RCRingX˙1˙XropprR1˙X˙1˙X˙1˙
21 1 2 3 6 16 isunit XUX˙1˙XropprR1˙
22 pm4.24 X˙1˙X˙1˙X˙1˙
23 20 21 22 3bitr4g RCRingXUX˙1˙