Description: In a commutative ring, the opposite ring is equivalent to the original ring (for theorems like unitpropd ). (Contributed by Mario Carneiro, 14-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opprval.1 | |
|
opprval.2 | |
||
opprval.3 | |
||
opprmulfval.4 | |
||
Assertion | crngoppr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.1 | |
|
2 | opprval.2 | |
|
3 | opprval.3 | |
|
4 | opprmulfval.4 | |
|
5 | 1 2 | crngcom | |
6 | 1 2 3 4 | opprmul | |
7 | 5 6 | eqtr4di | |