Metamath Proof Explorer


Theorem crngoppr

Description: In a commutative ring, the opposite ring is equivalent to the original ring (for theorems like unitpropd ). (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses opprval.1 B=BaseR
opprval.2 ·˙=R
opprval.3 O=opprR
opprmulfval.4 ˙=O
Assertion crngoppr RCRingXBYBX·˙Y=X˙Y

Proof

Step Hyp Ref Expression
1 opprval.1 B=BaseR
2 opprval.2 ·˙=R
3 opprval.3 O=opprR
4 opprmulfval.4 ˙=O
5 1 2 crngcom RCRingXBYBX·˙Y=Y·˙X
6 1 2 3 4 opprmul X˙Y=Y·˙X
7 5 6 eqtr4di RCRingXBYBX·˙Y=X˙Y