Metamath Proof Explorer


Theorem crngoppr

Description: In a commutative ring, the opposite ring is equivalent to the original ring (for theorems like unitpropd ). (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses opprval.1
|- B = ( Base ` R )
opprval.2
|- .x. = ( .r ` R )
opprval.3
|- O = ( oppR ` R )
opprmulfval.4
|- .xb = ( .r ` O )
Assertion crngoppr
|- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( X .xb Y ) )

Proof

Step Hyp Ref Expression
1 opprval.1
 |-  B = ( Base ` R )
2 opprval.2
 |-  .x. = ( .r ` R )
3 opprval.3
 |-  O = ( oppR ` R )
4 opprmulfval.4
 |-  .xb = ( .r ` O )
5 1 2 crngcom
 |-  ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) )
6 1 2 3 4 opprmul
 |-  ( X .xb Y ) = ( Y .x. X )
7 5 6 eqtr4di
 |-  ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( X .xb Y ) )