Metamath Proof Explorer


Theorem irredn0

Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I=IrredR
irredn0.z 0˙=0R
Assertion irredn0 RRingXIX0˙

Proof

Step Hyp Ref Expression
1 irredn0.i I=IrredR
2 irredn0.z 0˙=0R
3 eqid BaseR=BaseR
4 3 2 ring0cl RRing0˙BaseR
5 4 anim1i RRing¬0˙UnitR0˙BaseR¬0˙UnitR
6 eldif 0˙BaseRUnitR0˙BaseR¬0˙UnitR
7 5 6 sylibr RRing¬0˙UnitR0˙BaseRUnitR
8 eqid R=R
9 3 8 2 ringlz RRing0˙BaseR0˙R0˙=0˙
10 4 9 mpdan RRing0˙R0˙=0˙
11 10 adantr RRing¬0˙UnitR0˙R0˙=0˙
12 oveq1 x=0˙xRy=0˙Ry
13 12 eqeq1d x=0˙xRy=0˙0˙Ry=0˙
14 oveq2 y=0˙0˙Ry=0˙R0˙
15 14 eqeq1d y=0˙0˙Ry=0˙0˙R0˙=0˙
16 13 15 rspc2ev 0˙BaseRUnitR0˙BaseRUnitR0˙R0˙=0˙xBaseRUnitRyBaseRUnitRxRy=0˙
17 7 7 11 16 syl3anc RRing¬0˙UnitRxBaseRUnitRyBaseRUnitRxRy=0˙
18 17 ex RRing¬0˙UnitRxBaseRUnitRyBaseRUnitRxRy=0˙
19 18 orrd RRing0˙UnitRxBaseRUnitRyBaseRUnitRxRy=0˙
20 eqid UnitR=UnitR
21 eqid BaseRUnitR=BaseRUnitR
22 3 20 1 21 8 isnirred 0˙BaseR¬0˙I0˙UnitRxBaseRUnitRyBaseRUnitRxRy=0˙
23 4 22 syl RRing¬0˙I0˙UnitRxBaseRUnitRyBaseRUnitRxRy=0˙
24 19 23 mpbird RRing¬0˙I
25 24 adantr RRingXI¬0˙I
26 simpr RRingXIXI
27 eleq1 X=0˙XI0˙I
28 26 27 syl5ibcom RRingXIX=0˙0˙I
29 28 necon3bd RRingXI¬0˙IX0˙
30 25 29 mpd RRingXIX0˙