Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irredn0.i | |
|
irredn0.z | |
||
Assertion | irredn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredn0.i | |
|
2 | irredn0.z | |
|
3 | eqid | |
|
4 | 3 2 | ring0cl | |
5 | 4 | anim1i | |
6 | eldif | |
|
7 | 5 6 | sylibr | |
8 | eqid | |
|
9 | 3 8 2 | ringlz | |
10 | 4 9 | mpdan | |
11 | 10 | adantr | |
12 | oveq1 | |
|
13 | 12 | eqeq1d | |
14 | oveq2 | |
|
15 | 14 | eqeq1d | |
16 | 13 15 | rspc2ev | |
17 | 7 7 11 16 | syl3anc | |
18 | 17 | ex | |
19 | 18 | orrd | |
20 | eqid | |
|
21 | eqid | |
|
22 | 3 20 1 21 8 | isnirred | |
23 | 4 22 | syl | |
24 | 19 23 | mpbird | |
25 | 24 | adantr | |
26 | simpr | |
|
27 | eleq1 | |
|
28 | 26 27 | syl5ibcom | |
29 | 28 | necon3bd | |
30 | 25 29 | mpd | |