Metamath Proof Explorer


Theorem dvdsrid

Description: An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
Assertion dvdsrid RRingXBX˙X

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 id XBXB
4 eqid 1R=1R
5 1 4 ringidcl RRing1RB
6 eqid R=R
7 1 2 6 dvdsrmul XB1RBX˙1RRX
8 3 5 7 syl2anr RRingXBX˙1RRX
9 1 6 4 ringlidm RRingXB1RRX=X
10 8 9 breqtrd RRingXBX˙X