Metamath Proof Explorer


Theorem dvdsrid

Description: An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses dvdsr.1 𝐵 = ( Base ‘ 𝑅 )
dvdsr.2 = ( ∥r𝑅 )
Assertion dvdsrid ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑋 𝑋 )

Proof

Step Hyp Ref Expression
1 dvdsr.1 𝐵 = ( Base ‘ 𝑅 )
2 dvdsr.2 = ( ∥r𝑅 )
3 id ( 𝑋𝐵𝑋𝐵 )
4 eqid ( 1r𝑅 ) = ( 1r𝑅 )
5 1 4 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐵 )
6 eqid ( .r𝑅 ) = ( .r𝑅 )
7 1 2 6 dvdsrmul ( ( 𝑋𝐵 ∧ ( 1r𝑅 ) ∈ 𝐵 ) → 𝑋 ( ( 1r𝑅 ) ( .r𝑅 ) 𝑋 ) )
8 3 5 7 syl2anr ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑋 ( ( 1r𝑅 ) ( .r𝑅 ) 𝑋 ) )
9 1 6 4 ringlidm ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( ( 1r𝑅 ) ( .r𝑅 ) 𝑋 ) = 𝑋 )
10 8 9 breqtrd ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑋 𝑋 )