Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsr.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvdsr.2 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
3 |
|
id |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) |
4 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
5 |
1 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
1 2 6
|
dvdsrmul |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → 𝑋 ∥ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
8 |
3 5 7
|
syl2anr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
9 |
1 6 4
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
10 |
8 9
|
breqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ 𝑋 ) |