Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsr.1 |
|- B = ( Base ` R ) |
2 |
|
dvdsr.2 |
|- .|| = ( ||r ` R ) |
3 |
|
id |
|- ( X e. B -> X e. B ) |
4 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
5 |
1 4
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
7 |
1 2 6
|
dvdsrmul |
|- ( ( X e. B /\ ( 1r ` R ) e. B ) -> X .|| ( ( 1r ` R ) ( .r ` R ) X ) ) |
8 |
3 5 7
|
syl2anr |
|- ( ( R e. Ring /\ X e. B ) -> X .|| ( ( 1r ` R ) ( .r ` R ) X ) ) |
9 |
1 6 4
|
ringlidm |
|- ( ( R e. Ring /\ X e. B ) -> ( ( 1r ` R ) ( .r ` R ) X ) = X ) |
10 |
8 9
|
breqtrd |
|- ( ( R e. Ring /\ X e. B ) -> X .|| X ) |