| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsr.1 |
|- B = ( Base ` R ) |
| 2 |
|
dvdsr.2 |
|- .|| = ( ||r ` R ) |
| 3 |
|
dvdsr.3 |
|- .x. = ( .r ` R ) |
| 4 |
|
simpl |
|- ( ( X e. B /\ Y e. B ) -> X e. B ) |
| 5 |
|
simpr |
|- ( ( X e. B /\ Y e. B ) -> Y e. B ) |
| 6 |
|
eqid |
|- ( Y .x. X ) = ( Y .x. X ) |
| 7 |
|
oveq1 |
|- ( z = Y -> ( z .x. X ) = ( Y .x. X ) ) |
| 8 |
7
|
eqeq1d |
|- ( z = Y -> ( ( z .x. X ) = ( Y .x. X ) <-> ( Y .x. X ) = ( Y .x. X ) ) ) |
| 9 |
8
|
rspcev |
|- ( ( Y e. B /\ ( Y .x. X ) = ( Y .x. X ) ) -> E. z e. B ( z .x. X ) = ( Y .x. X ) ) |
| 10 |
5 6 9
|
sylancl |
|- ( ( X e. B /\ Y e. B ) -> E. z e. B ( z .x. X ) = ( Y .x. X ) ) |
| 11 |
1 2 3
|
dvdsr |
|- ( X .|| ( Y .x. X ) <-> ( X e. B /\ E. z e. B ( z .x. X ) = ( Y .x. X ) ) ) |
| 12 |
4 10 11
|
sylanbrc |
|- ( ( X e. B /\ Y e. B ) -> X .|| ( Y .x. X ) ) |