Metamath Proof Explorer


Theorem dvreq1

Description: Equality in terms of ratio equal to ring unity. ( diveq1 analog.) (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dvreq1.b B=BaseR
dvreq1.o U=UnitR
dvreq1.d ×˙=/rR
dvreq1.t 1˙=1R
Assertion dvreq1 RRingXBYUX×˙Y=1˙X=Y

Proof

Step Hyp Ref Expression
1 dvreq1.b B=BaseR
2 dvreq1.o U=UnitR
3 dvreq1.d ×˙=/rR
4 dvreq1.t 1˙=1R
5 oveq1 X×˙Y=1˙X×˙YRY=1˙RY
6 eqid R=R
7 1 2 3 6 dvrcan1 RRingXBYUX×˙YRY=X
8 1 2 unitcl YUYB
9 1 6 4 ringlidm RRingYB1˙RY=Y
10 8 9 sylan2 RRingYU1˙RY=Y
11 10 3adant2 RRingXBYU1˙RY=Y
12 7 11 eqeq12d RRingXBYUX×˙YRY=1˙RYX=Y
13 5 12 imbitrid RRingXBYUX×˙Y=1˙X=Y
14 2 3 4 dvrid RRingYUY×˙Y=1˙
15 14 3adant2 RRingXBYUY×˙Y=1˙
16 oveq1 X=YX×˙Y=Y×˙Y
17 16 eqeq1d X=YX×˙Y=1˙Y×˙Y=1˙
18 15 17 syl5ibrcom RRingXBYUX=YX×˙Y=1˙
19 13 18 impbid RRingXBYUX×˙Y=1˙X=Y