| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvreq1.b |
|- B = ( Base ` R ) |
| 2 |
|
dvreq1.o |
|- U = ( Unit ` R ) |
| 3 |
|
dvreq1.d |
|- ./ = ( /r ` R ) |
| 4 |
|
dvreq1.t |
|- .1. = ( 1r ` R ) |
| 5 |
|
oveq1 |
|- ( ( X ./ Y ) = .1. -> ( ( X ./ Y ) ( .r ` R ) Y ) = ( .1. ( .r ` R ) Y ) ) |
| 6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 7 |
1 2 3 6
|
dvrcan1 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) ( .r ` R ) Y ) = X ) |
| 8 |
1 2
|
unitcl |
|- ( Y e. U -> Y e. B ) |
| 9 |
1 6 4
|
ringlidm |
|- ( ( R e. Ring /\ Y e. B ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 10 |
8 9
|
sylan2 |
|- ( ( R e. Ring /\ Y e. U ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 11 |
10
|
3adant2 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 12 |
7 11
|
eqeq12d |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( ( X ./ Y ) ( .r ` R ) Y ) = ( .1. ( .r ` R ) Y ) <-> X = Y ) ) |
| 13 |
5 12
|
imbitrid |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) = .1. -> X = Y ) ) |
| 14 |
2 3 4
|
dvrid |
|- ( ( R e. Ring /\ Y e. U ) -> ( Y ./ Y ) = .1. ) |
| 15 |
14
|
3adant2 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( Y ./ Y ) = .1. ) |
| 16 |
|
oveq1 |
|- ( X = Y -> ( X ./ Y ) = ( Y ./ Y ) ) |
| 17 |
16
|
eqeq1d |
|- ( X = Y -> ( ( X ./ Y ) = .1. <-> ( Y ./ Y ) = .1. ) ) |
| 18 |
15 17
|
syl5ibrcom |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X = Y -> ( X ./ Y ) = .1. ) ) |
| 19 |
13 18
|
impbid |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) = .1. <-> X = Y ) ) |