Metamath Proof Explorer


Theorem dvreq1

Description: A cancellation law for division. ( diveq1 analog.) (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dvreq1.b 𝐵 = ( Base ‘ 𝑅 )
dvreq1.o 𝑈 = ( Unit ‘ 𝑅 )
dvreq1.d / = ( /r𝑅 )
dvreq1.t 1 = ( 1r𝑅 )
Assertion dvreq1 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈 ) → ( ( 𝑋 / 𝑌 ) = 1𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 dvreq1.b 𝐵 = ( Base ‘ 𝑅 )
2 dvreq1.o 𝑈 = ( Unit ‘ 𝑅 )
3 dvreq1.d / = ( /r𝑅 )
4 dvreq1.t 1 = ( 1r𝑅 )
5 oveq1 ( ( 𝑋 / 𝑌 ) = 1 → ( ( 𝑋 / 𝑌 ) ( .r𝑅 ) 𝑌 ) = ( 1 ( .r𝑅 ) 𝑌 ) )
6 eqid ( .r𝑅 ) = ( .r𝑅 )
7 1 2 3 6 dvrcan1 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈 ) → ( ( 𝑋 / 𝑌 ) ( .r𝑅 ) 𝑌 ) = 𝑋 )
8 1 2 unitcl ( 𝑌𝑈𝑌𝐵 )
9 1 6 4 ringlidm ( ( 𝑅 ∈ Ring ∧ 𝑌𝐵 ) → ( 1 ( .r𝑅 ) 𝑌 ) = 𝑌 )
10 8 9 sylan2 ( ( 𝑅 ∈ Ring ∧ 𝑌𝑈 ) → ( 1 ( .r𝑅 ) 𝑌 ) = 𝑌 )
11 10 3adant2 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈 ) → ( 1 ( .r𝑅 ) 𝑌 ) = 𝑌 )
12 7 11 eqeq12d ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈 ) → ( ( ( 𝑋 / 𝑌 ) ( .r𝑅 ) 𝑌 ) = ( 1 ( .r𝑅 ) 𝑌 ) ↔ 𝑋 = 𝑌 ) )
13 5 12 syl5ib ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈 ) → ( ( 𝑋 / 𝑌 ) = 1𝑋 = 𝑌 ) )
14 2 3 4 dvrid ( ( 𝑅 ∈ Ring ∧ 𝑌𝑈 ) → ( 𝑌 / 𝑌 ) = 1 )
15 14 3adant2 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈 ) → ( 𝑌 / 𝑌 ) = 1 )
16 oveq1 ( 𝑋 = 𝑌 → ( 𝑋 / 𝑌 ) = ( 𝑌 / 𝑌 ) )
17 16 eqeq1d ( 𝑋 = 𝑌 → ( ( 𝑋 / 𝑌 ) = 1 ↔ ( 𝑌 / 𝑌 ) = 1 ) )
18 15 17 syl5ibrcom ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈 ) → ( 𝑋 = 𝑌 → ( 𝑋 / 𝑌 ) = 1 ) )
19 13 18 impbid ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈 ) → ( ( 𝑋 / 𝑌 ) = 1𝑋 = 𝑌 ) )