Metamath Proof Explorer


Theorem unitcl

Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses unitcl.1 𝐵 = ( Base ‘ 𝑅 )
unitcl.2 𝑈 = ( Unit ‘ 𝑅 )
Assertion unitcl ( 𝑋𝑈𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 unitcl.1 𝐵 = ( Base ‘ 𝑅 )
2 unitcl.2 𝑈 = ( Unit ‘ 𝑅 )
3 eqid ( 1r𝑅 ) = ( 1r𝑅 )
4 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
5 eqid ( oppr𝑅 ) = ( oppr𝑅 )
6 eqid ( ∥r ‘ ( oppr𝑅 ) ) = ( ∥r ‘ ( oppr𝑅 ) )
7 2 3 4 5 6 isunit ( 𝑋𝑈 ↔ ( 𝑋 ( ∥r𝑅 ) ( 1r𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) ) )
8 7 simplbi ( 𝑋𝑈𝑋 ( ∥r𝑅 ) ( 1r𝑅 ) )
9 1 4 dvdsrcl ( 𝑋 ( ∥r𝑅 ) ( 1r𝑅 ) → 𝑋𝐵 )
10 8 9 syl ( 𝑋𝑈𝑋𝐵 )