Metamath Proof Explorer


Theorem dvrid

Description: A cancellation law for division. ( divid analog.) (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses unitdvcl.o 𝑈 = ( Unit ‘ 𝑅 )
unitdvcl.d / = ( /r𝑅 )
dvrid.o 1 = ( 1r𝑅 )
Assertion dvrid ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑋 / 𝑋 ) = 1 )

Proof

Step Hyp Ref Expression
1 unitdvcl.o 𝑈 = ( Unit ‘ 𝑅 )
2 unitdvcl.d / = ( /r𝑅 )
3 dvrid.o 1 = ( 1r𝑅 )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 4 1 unitcl ( 𝑋𝑈𝑋 ∈ ( Base ‘ 𝑅 ) )
6 5 adantl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) )
7 eqid ( .r𝑅 ) = ( .r𝑅 )
8 eqid ( invr𝑅 ) = ( invr𝑅 )
9 4 7 1 8 2 dvrval ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( 𝑋 / 𝑋 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑋 ) ) )
10 6 9 sylancom ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑋 / 𝑋 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑋 ) ) )
11 1 8 7 3 unitrinv ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑋 ) ) = 1 )
12 10 11 eqtrd ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑋 / 𝑋 ) = 1 )