Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
divmul2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = 1 ↔ 𝐴 = ( 𝐵 · 1 ) ) ) |
3 |
1 2
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = 1 ↔ 𝐴 = ( 𝐵 · 1 ) ) ) |
4 |
3
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = 1 ↔ 𝐴 = ( 𝐵 · 1 ) ) ) |
5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
6 |
5
|
mulid1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · 1 ) = 𝐵 ) |
7 |
6
|
eqeq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 = ( 𝐵 · 1 ) ↔ 𝐴 = 𝐵 ) ) |
8 |
4 7
|
bitrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = 1 ↔ 𝐴 = 𝐵 ) ) |