| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reccl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
| 2 |
|
mulneg1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 𝐵 ) ∈ ℂ ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 4 |
3
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 5 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 6 |
|
divrec |
⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / 𝐵 ) = ( - 𝐴 · ( 1 / 𝐵 ) ) ) |
| 7 |
5 6
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / 𝐵 ) = ( - 𝐴 · ( 1 / 𝐵 ) ) ) |
| 8 |
|
divrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 9 |
8
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 10 |
4 7 9
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |