Metamath Proof Explorer


Theorem divneg

Description: Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004)

Ref Expression
Assertion divneg ABB0AB=AB

Proof

Step Hyp Ref Expression
1 reccl BB01B
2 mulneg1 A1BA1B=A1B
3 1 2 sylan2 ABB0A1B=A1B
4 3 3impb ABB0A1B=A1B
5 negcl AA
6 divrec ABB0AB=A1B
7 5 6 syl3an1 ABB0AB=A1B
8 divrec ABB0AB=A1B
9 8 negeqd ABB0AB=A1B
10 4 7 9 3eqtr4rd ABB0AB=AB