Metamath Proof Explorer


Theorem negeqd

Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999)

Ref Expression
Hypothesis negeqd.1 φA=B
Assertion negeqd φA=B

Proof

Step Hyp Ref Expression
1 negeqd.1 φA=B
2 negeq A=BA=B
3 1 2 syl φA=B