Metamath Proof Explorer


Theorem nfnegd

Description: Deduction version of nfneg . (Contributed by NM, 29-Feb-2008) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypothesis nfnegd.1 φ _ x A
Assertion nfnegd φ _ x A

Proof

Step Hyp Ref Expression
1 nfnegd.1 φ _ x A
2 df-neg A = 0 A
3 nfcvd φ _ x 0
4 nfcvd φ _ x
5 3 4 1 nfovd φ _ x 0 A
6 2 5 nfcxfrd φ _ x A