| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrdir.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvrdir.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
dvrdir.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 4 |
|
dvrdir.t |
⊢ / = ( /r ‘ 𝑅 ) |
| 5 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) |
| 6 |
|
simpr1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
| 7 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑌 ∈ 𝐵 ) |
| 8 |
1 2
|
unitss |
⊢ 𝑈 ⊆ 𝐵 |
| 9 |
|
simpr3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑍 ∈ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 11 |
2 10
|
unitinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝑈 ) |
| 12 |
9 11
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝑈 ) |
| 13 |
8 12
|
sselid |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 15 |
1 3 14
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 16 |
5 6 7 13 15
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 17 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑅 ∈ Grp ) |
| 19 |
1 3
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 20 |
18 6 7 19
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 21 |
1 14 2 10 4
|
dvrval |
⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 + 𝑌 ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 22 |
20 9 21
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 + 𝑌 ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 23 |
1 14 2 10 4
|
dvrval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑋 / 𝑍 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 24 |
6 9 23
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑋 / 𝑍 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 25 |
1 14 2 10 4
|
dvrval |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑌 / 𝑍 ) = ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 26 |
7 9 25
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑌 / 𝑍 ) = ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
| 27 |
24 26
|
oveq12d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 / 𝑍 ) + ( 𝑌 / 𝑍 ) ) = ( ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
| 28 |
16 22 27
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 / 𝑍 ) + ( 𝑌 / 𝑍 ) ) ) |