Metamath Proof Explorer


Theorem dvrdir

Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses dvrdir.b 𝐵 = ( Base ‘ 𝑅 )
dvrdir.u 𝑈 = ( Unit ‘ 𝑅 )
dvrdir.p + = ( +g𝑅 )
dvrdir.t / = ( /r𝑅 )
Assertion dvrdir ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 / 𝑍 ) + ( 𝑌 / 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 dvrdir.b 𝐵 = ( Base ‘ 𝑅 )
2 dvrdir.u 𝑈 = ( Unit ‘ 𝑅 )
3 dvrdir.p + = ( +g𝑅 )
4 dvrdir.t / = ( /r𝑅 )
5 simpl ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → 𝑅 ∈ Ring )
6 simpr1 ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → 𝑋𝐵 )
7 simpr2 ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → 𝑌𝐵 )
8 1 2 unitss 𝑈𝐵
9 simpr3 ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → 𝑍𝑈 )
10 eqid ( invr𝑅 ) = ( invr𝑅 )
11 2 10 unitinvcl ( ( 𝑅 ∈ Ring ∧ 𝑍𝑈 ) → ( ( invr𝑅 ) ‘ 𝑍 ) ∈ 𝑈 )
12 9 11 syldan ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( ( invr𝑅 ) ‘ 𝑍 ) ∈ 𝑈 )
13 8 12 sselid ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( ( invr𝑅 ) ‘ 𝑍 ) ∈ 𝐵 )
14 eqid ( .r𝑅 ) = ( .r𝑅 )
15 1 3 14 ringdir ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵 ∧ ( ( invr𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) = ( ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) ) )
16 5 6 7 13 15 syl13anc ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( ( 𝑋 + 𝑌 ) ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) = ( ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) ) )
17 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
18 17 adantr ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → 𝑅 ∈ Grp )
19 1 3 grpcl ( ( 𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
20 18 6 7 19 syl3anc ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
21 1 14 2 10 4 dvrval ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵𝑍𝑈 ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 + 𝑌 ) ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) )
22 20 9 21 syl2anc ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 + 𝑌 ) ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) )
23 1 14 2 10 4 dvrval ( ( 𝑋𝐵𝑍𝑈 ) → ( 𝑋 / 𝑍 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) )
24 6 9 23 syl2anc ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( 𝑋 / 𝑍 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) )
25 1 14 2 10 4 dvrval ( ( 𝑌𝐵𝑍𝑈 ) → ( 𝑌 / 𝑍 ) = ( 𝑌 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) )
26 7 9 25 syl2anc ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( 𝑌 / 𝑍 ) = ( 𝑌 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) )
27 24 26 oveq12d ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( ( 𝑋 / 𝑍 ) + ( 𝑌 / 𝑍 ) ) = ( ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) + ( 𝑌 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑍 ) ) ) )
28 16 22 27 3eqtr4d ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝑈 ) ) → ( ( 𝑋 + 𝑌 ) / 𝑍 ) = ( ( 𝑋 / 𝑍 ) + ( 𝑌 / 𝑍 ) ) )