Metamath Proof Explorer


Theorem dvrdir

Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses dvrdir.b B=BaseR
dvrdir.u U=UnitR
dvrdir.p +˙=+R
dvrdir.t ×˙=/rR
Assertion dvrdir RRingXBYBZUX+˙Y×˙Z=X×˙Z+˙Y×˙Z

Proof

Step Hyp Ref Expression
1 dvrdir.b B=BaseR
2 dvrdir.u U=UnitR
3 dvrdir.p +˙=+R
4 dvrdir.t ×˙=/rR
5 simpl RRingXBYBZURRing
6 simpr1 RRingXBYBZUXB
7 simpr2 RRingXBYBZUYB
8 1 2 unitss UB
9 simpr3 RRingXBYBZUZU
10 eqid invrR=invrR
11 2 10 unitinvcl RRingZUinvrRZU
12 9 11 syldan RRingXBYBZUinvrRZU
13 8 12 sselid RRingXBYBZUinvrRZB
14 eqid R=R
15 1 3 14 ringdir RRingXBYBinvrRZBX+˙YRinvrRZ=XRinvrRZ+˙YRinvrRZ
16 5 6 7 13 15 syl13anc RRingXBYBZUX+˙YRinvrRZ=XRinvrRZ+˙YRinvrRZ
17 ringgrp RRingRGrp
18 17 adantr RRingXBYBZURGrp
19 1 3 grpcl RGrpXBYBX+˙YB
20 18 6 7 19 syl3anc RRingXBYBZUX+˙YB
21 1 14 2 10 4 dvrval X+˙YBZUX+˙Y×˙Z=X+˙YRinvrRZ
22 20 9 21 syl2anc RRingXBYBZUX+˙Y×˙Z=X+˙YRinvrRZ
23 1 14 2 10 4 dvrval XBZUX×˙Z=XRinvrRZ
24 6 9 23 syl2anc RRingXBYBZUX×˙Z=XRinvrRZ
25 1 14 2 10 4 dvrval YBZUY×˙Z=YRinvrRZ
26 7 9 25 syl2anc RRingXBYBZUY×˙Z=YRinvrRZ
27 24 26 oveq12d RRingXBYBZUX×˙Z+˙Y×˙Z=XRinvrRZ+˙YRinvrRZ
28 16 22 27 3eqtr4d RRingXBYBZUX+˙Y×˙Z=X×˙Z+˙Y×˙Z