Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvrdir.b | |
|
dvrdir.u | |
||
dvrdir.p | |
||
dvrdir.t | |
||
Assertion | dvrdir | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrdir.b | |
|
2 | dvrdir.u | |
|
3 | dvrdir.p | |
|
4 | dvrdir.t | |
|
5 | simpl | |
|
6 | simpr1 | |
|
7 | simpr2 | |
|
8 | 1 2 | unitss | |
9 | simpr3 | |
|
10 | eqid | |
|
11 | 2 10 | unitinvcl | |
12 | 9 11 | syldan | |
13 | 8 12 | sselid | |
14 | eqid | |
|
15 | 1 3 14 | ringdir | |
16 | 5 6 7 13 15 | syl13anc | |
17 | ringgrp | |
|
18 | 17 | adantr | |
19 | 1 3 | grpcl | |
20 | 18 6 7 19 | syl3anc | |
21 | 1 14 2 10 4 | dvrval | |
22 | 20 9 21 | syl2anc | |
23 | 1 14 2 10 4 | dvrval | |
24 | 6 9 23 | syl2anc | |
25 | 1 14 2 10 4 | dvrval | |
26 | 7 9 25 | syl2anc | |
27 | 24 26 | oveq12d | |
28 | 16 22 27 | 3eqtr4d | |