Metamath Proof Explorer


Theorem dvrdir

Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses dvrdir.b B = Base R
dvrdir.u U = Unit R
dvrdir.p + ˙ = + R
dvrdir.t × ˙ = / r R
Assertion dvrdir R Ring X B Y B Z U X + ˙ Y × ˙ Z = X × ˙ Z + ˙ Y × ˙ Z

Proof

Step Hyp Ref Expression
1 dvrdir.b B = Base R
2 dvrdir.u U = Unit R
3 dvrdir.p + ˙ = + R
4 dvrdir.t × ˙ = / r R
5 simpl R Ring X B Y B Z U R Ring
6 simpr1 R Ring X B Y B Z U X B
7 simpr2 R Ring X B Y B Z U Y B
8 1 2 unitss U B
9 simpr3 R Ring X B Y B Z U Z U
10 eqid inv r R = inv r R
11 2 10 unitinvcl R Ring Z U inv r R Z U
12 9 11 syldan R Ring X B Y B Z U inv r R Z U
13 8 12 sselid R Ring X B Y B Z U inv r R Z B
14 eqid R = R
15 1 3 14 ringdir R Ring X B Y B inv r R Z B X + ˙ Y R inv r R Z = X R inv r R Z + ˙ Y R inv r R Z
16 5 6 7 13 15 syl13anc R Ring X B Y B Z U X + ˙ Y R inv r R Z = X R inv r R Z + ˙ Y R inv r R Z
17 ringgrp R Ring R Grp
18 17 adantr R Ring X B Y B Z U R Grp
19 1 3 grpcl R Grp X B Y B X + ˙ Y B
20 18 6 7 19 syl3anc R Ring X B Y B Z U X + ˙ Y B
21 1 14 2 10 4 dvrval X + ˙ Y B Z U X + ˙ Y × ˙ Z = X + ˙ Y R inv r R Z
22 20 9 21 syl2anc R Ring X B Y B Z U X + ˙ Y × ˙ Z = X + ˙ Y R inv r R Z
23 1 14 2 10 4 dvrval X B Z U X × ˙ Z = X R inv r R Z
24 6 9 23 syl2anc R Ring X B Y B Z U X × ˙ Z = X R inv r R Z
25 1 14 2 10 4 dvrval Y B Z U Y × ˙ Z = Y R inv r R Z
26 7 9 25 syl2anc R Ring X B Y B Z U Y × ˙ Z = Y R inv r R Z
27 24 26 oveq12d R Ring X B Y B Z U X × ˙ Z + ˙ Y × ˙ Z = X R inv r R Z + ˙ Y R inv r R Z
28 16 22 27 3eqtr4d R Ring X B Y B Z U X + ˙ Y × ˙ Z = X × ˙ Z + ˙ Y × ˙ Z