Metamath Proof Explorer


Theorem ringpropd

Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses ringpropd.1 φB=BaseK
ringpropd.2 φB=BaseL
ringpropd.3 φxByBx+Ky=x+Ly
ringpropd.4 φxByBxKy=xLy
Assertion ringpropd φKRingLRing

Proof

Step Hyp Ref Expression
1 ringpropd.1 φB=BaseK
2 ringpropd.2 φB=BaseL
3 ringpropd.3 φxByBx+Ky=x+Ly
4 ringpropd.4 φxByBxKy=xLy
5 simpll φKGrpmulGrpKMnduBvBwBφ
6 simprll φKGrpmulGrpKMnduBvBwBuB
7 simplrl φKGrpmulGrpKMnduBvBwBKGrp
8 simprlr φKGrpmulGrpKMnduBvBwBvB
9 1 ad2antrr φKGrpmulGrpKMnduBvBwBB=BaseK
10 8 9 eleqtrd φKGrpmulGrpKMnduBvBwBvBaseK
11 simprr φKGrpmulGrpKMnduBvBwBwB
12 11 9 eleqtrd φKGrpmulGrpKMnduBvBwBwBaseK
13 eqid BaseK=BaseK
14 eqid +K=+K
15 13 14 grpcl KGrpvBaseKwBaseKv+KwBaseK
16 7 10 12 15 syl3anc φKGrpmulGrpKMnduBvBwBv+KwBaseK
17 16 9 eleqtrrd φKGrpmulGrpKMnduBvBwBv+KwB
18 4 oveqrspc2v φuBv+KwBuKv+Kw=uLv+Kw
19 5 6 17 18 syl12anc φKGrpmulGrpKMnduBvBwBuKv+Kw=uLv+Kw
20 3 oveqrspc2v φvBwBv+Kw=v+Lw
21 5 8 11 20 syl12anc φKGrpmulGrpKMnduBvBwBv+Kw=v+Lw
22 21 oveq2d φKGrpmulGrpKMnduBvBwBuLv+Kw=uLv+Lw
23 19 22 eqtrd φKGrpmulGrpKMnduBvBwBuKv+Kw=uLv+Lw
24 simplrr φKGrpmulGrpKMnduBvBwBmulGrpKMnd
25 6 9 eleqtrd φKGrpmulGrpKMnduBvBwBuBaseK
26 eqid mulGrpK=mulGrpK
27 26 13 mgpbas BaseK=BasemulGrpK
28 eqid K=K
29 26 28 mgpplusg K=+mulGrpK
30 27 29 mndcl mulGrpKMnduBaseKvBaseKuKvBaseK
31 24 25 10 30 syl3anc φKGrpmulGrpKMnduBvBwBuKvBaseK
32 31 9 eleqtrrd φKGrpmulGrpKMnduBvBwBuKvB
33 27 29 mndcl mulGrpKMnduBaseKwBaseKuKwBaseK
34 24 25 12 33 syl3anc φKGrpmulGrpKMnduBvBwBuKwBaseK
35 34 9 eleqtrrd φKGrpmulGrpKMnduBvBwBuKwB
36 3 oveqrspc2v φuKvBuKwBuKv+KuKw=uKv+LuKw
37 5 32 35 36 syl12anc φKGrpmulGrpKMnduBvBwBuKv+KuKw=uKv+LuKw
38 4 oveqrspc2v φuBvBuKv=uLv
39 5 6 8 38 syl12anc φKGrpmulGrpKMnduBvBwBuKv=uLv
40 4 oveqrspc2v φuBwBuKw=uLw
41 5 6 11 40 syl12anc φKGrpmulGrpKMnduBvBwBuKw=uLw
42 39 41 oveq12d φKGrpmulGrpKMnduBvBwBuKv+LuKw=uLv+LuLw
43 37 42 eqtrd φKGrpmulGrpKMnduBvBwBuKv+KuKw=uLv+LuLw
44 23 43 eqeq12d φKGrpmulGrpKMnduBvBwBuKv+Kw=uKv+KuKwuLv+Lw=uLv+LuLw
45 13 14 grpcl KGrpuBaseKvBaseKu+KvBaseK
46 7 25 10 45 syl3anc φKGrpmulGrpKMnduBvBwBu+KvBaseK
47 46 9 eleqtrrd φKGrpmulGrpKMnduBvBwBu+KvB
48 4 oveqrspc2v φu+KvBwBu+KvKw=u+KvLw
49 5 47 11 48 syl12anc φKGrpmulGrpKMnduBvBwBu+KvKw=u+KvLw
50 3 oveqrspc2v φuBvBu+Kv=u+Lv
51 5 6 8 50 syl12anc φKGrpmulGrpKMnduBvBwBu+Kv=u+Lv
52 51 oveq1d φKGrpmulGrpKMnduBvBwBu+KvLw=u+LvLw
53 49 52 eqtrd φKGrpmulGrpKMnduBvBwBu+KvKw=u+LvLw
54 27 29 mndcl mulGrpKMndvBaseKwBaseKvKwBaseK
55 24 10 12 54 syl3anc φKGrpmulGrpKMnduBvBwBvKwBaseK
56 55 9 eleqtrrd φKGrpmulGrpKMnduBvBwBvKwB
57 3 oveqrspc2v φuKwBvKwBuKw+KvKw=uKw+LvKw
58 5 35 56 57 syl12anc φKGrpmulGrpKMnduBvBwBuKw+KvKw=uKw+LvKw
59 4 oveqrspc2v φvBwBvKw=vLw
60 5 8 11 59 syl12anc φKGrpmulGrpKMnduBvBwBvKw=vLw
61 41 60 oveq12d φKGrpmulGrpKMnduBvBwBuKw+LvKw=uLw+LvLw
62 58 61 eqtrd φKGrpmulGrpKMnduBvBwBuKw+KvKw=uLw+LvLw
63 53 62 eqeq12d φKGrpmulGrpKMnduBvBwBu+KvKw=uKw+KvKwu+LvLw=uLw+LvLw
64 44 63 anbi12d φKGrpmulGrpKMnduBvBwBuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
65 64 anassrs φKGrpmulGrpKMnduBvBwBuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
66 65 ralbidva φKGrpmulGrpKMnduBvBwBuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwwBuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
67 66 2ralbidva φKGrpmulGrpKMnduBvBwBuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwuBvBwBuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
68 1 adantr φKGrpmulGrpKMndB=BaseK
69 68 raleqdv φKGrpmulGrpKMndwBuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKw
70 68 69 raleqbidv φKGrpmulGrpKMndvBwBuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKw
71 68 70 raleqbidv φKGrpmulGrpKMnduBvBwBuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwuBaseKvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKw
72 2 adantr φKGrpmulGrpKMndB=BaseL
73 72 raleqdv φKGrpmulGrpKMndwBuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLwwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
74 72 73 raleqbidv φKGrpmulGrpKMndvBwBuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLwvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
75 72 74 raleqbidv φKGrpmulGrpKMnduBvBwBuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLwuBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
76 67 71 75 3bitr3d φKGrpmulGrpKMnduBaseKvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwuBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
77 76 pm5.32da φKGrpmulGrpKMnduBaseKvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwKGrpmulGrpKMnduBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
78 df-3an KGrpmulGrpKMnduBaseKvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwKGrpmulGrpKMnduBaseKvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKw
79 df-3an KGrpmulGrpKMnduBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLwKGrpmulGrpKMnduBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
80 77 78 79 3bitr4g φKGrpmulGrpKMnduBaseKvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwKGrpmulGrpKMnduBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
81 1 2 3 grppropd φKGrpLGrp
82 1 27 eqtrdi φB=BasemulGrpK
83 eqid mulGrpL=mulGrpL
84 eqid BaseL=BaseL
85 83 84 mgpbas BaseL=BasemulGrpL
86 2 85 eqtrdi φB=BasemulGrpL
87 29 oveqi xKy=x+mulGrpKy
88 eqid L=L
89 83 88 mgpplusg L=+mulGrpL
90 89 oveqi xLy=x+mulGrpLy
91 4 87 90 3eqtr3g φxByBx+mulGrpKy=x+mulGrpLy
92 82 86 91 mndpropd φmulGrpKMndmulGrpLMnd
93 81 92 3anbi12d φKGrpmulGrpKMnduBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLwLGrpmulGrpLMnduBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
94 80 93 bitrd φKGrpmulGrpKMnduBaseKvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKwLGrpmulGrpLMnduBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
95 13 26 14 28 isring KRingKGrpmulGrpKMnduBaseKvBaseKwBaseKuKv+Kw=uKv+KuKwu+KvKw=uKw+KvKw
96 eqid +L=+L
97 84 83 96 88 isring LRingLGrpmulGrpLMnduBaseLvBaseLwBaseLuLv+Lw=uLv+LuLwu+LvLw=uLw+LvLw
98 94 95 97 3bitr4g φKRingLRing