Metamath Proof Explorer


Theorem crngpropd

Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses ringpropd.1 φB=BaseK
ringpropd.2 φB=BaseL
ringpropd.3 φxByBx+Ky=x+Ly
ringpropd.4 φxByBxKy=xLy
Assertion crngpropd φKCRingLCRing

Proof

Step Hyp Ref Expression
1 ringpropd.1 φB=BaseK
2 ringpropd.2 φB=BaseL
3 ringpropd.3 φxByBx+Ky=x+Ly
4 ringpropd.4 φxByBxKy=xLy
5 1 2 3 4 ringpropd φKRingLRing
6 eqid mulGrpK=mulGrpK
7 eqid BaseK=BaseK
8 6 7 mgpbas BaseK=BasemulGrpK
9 1 8 eqtrdi φB=BasemulGrpK
10 eqid mulGrpL=mulGrpL
11 eqid BaseL=BaseL
12 10 11 mgpbas BaseL=BasemulGrpL
13 2 12 eqtrdi φB=BasemulGrpL
14 eqid K=K
15 6 14 mgpplusg K=+mulGrpK
16 15 oveqi xKy=x+mulGrpKy
17 eqid L=L
18 10 17 mgpplusg L=+mulGrpL
19 18 oveqi xLy=x+mulGrpLy
20 4 16 19 3eqtr3g φxByBx+mulGrpKy=x+mulGrpLy
21 9 13 20 cmnpropd φmulGrpKCMndmulGrpLCMnd
22 5 21 anbi12d φKRingmulGrpKCMndLRingmulGrpLCMnd
23 6 iscrng KCRingKRingmulGrpKCMnd
24 10 iscrng LCRingLRingmulGrpLCMnd
25 22 23 24 3bitr4g φKCRingLCRing