Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringpropd.1 | |
|
ringpropd.2 | |
||
ringpropd.3 | |
||
ringpropd.4 | |
||
Assertion | crngpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringpropd.1 | |
|
2 | ringpropd.2 | |
|
3 | ringpropd.3 | |
|
4 | ringpropd.4 | |
|
5 | 1 2 3 4 | ringpropd | |
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 | mgpbas | |
9 | 1 8 | eqtrdi | |
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | mgpbas | |
13 | 2 12 | eqtrdi | |
14 | eqid | |
|
15 | 6 14 | mgpplusg | |
16 | 15 | oveqi | |
17 | eqid | |
|
18 | 10 17 | mgpplusg | |
19 | 18 | oveqi | |
20 | 4 16 19 | 3eqtr3g | |
21 | 9 13 20 | cmnpropd | |
22 | 5 21 | anbi12d | |
23 | 6 | iscrng | |
24 | 10 | iscrng | |
25 | 22 23 24 | 3bitr4g | |