Metamath Proof Explorer


Theorem brric2

Description: The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion brric2 R𝑟SRRingSRingffRRingIsoS

Proof

Step Hyp Ref Expression
1 brric R𝑟SRRingIsoS
2 n0 RRingIsoSffRRingIsoS
3 rimrhm fRRingIsoSfRRingHomS
4 eqid mulGrpR=mulGrpR
5 eqid mulGrpS=mulGrpS
6 4 5 isrhm fRRingHomSRRingSRingfRGrpHomSfmulGrpRMndHommulGrpS
7 6 simplbi fRRingHomSRRingSRing
8 3 7 syl fRRingIsoSRRingSRing
9 8 exlimiv ffRRingIsoSRRingSRing
10 9 pm4.71ri ffRRingIsoSRRingSRingffRRingIsoS
11 1 2 10 3bitri R𝑟SRRingSRingffRRingIsoS