Metamath Proof Explorer


Theorem rimrhm

Description: A ring isomorphism is a homomorphism. Compare gimghm . (Contributed by AV, 22-Oct-2019) Remove hypotheses. (Revised by SN, 10-Jan-2025)

Ref Expression
Assertion rimrhm FRRingIsoSFRRingHomS

Proof

Step Hyp Ref Expression
1 isrim0 FRRingIsoSFRRingHomSF-1SRingHomR
2 1 simplbi FRRingIsoSFRRingHomS