Metamath Proof Explorer


Theorem gimghm

Description: An isomorphism of groups is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion gimghm FRGrpIsoSFRGrpHomS

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid BaseS=BaseS
3 1 2 isgim FRGrpIsoSFRGrpHomSF:BaseR1-1 ontoBaseS
4 3 simplbi FRGrpIsoSFRGrpHomS